ON THE DEVELOPMENT OF A MAGNETOHYDRODYNAMIC
BOUNDARY LAYER

I. Pop UDC 532.517:538.4

The problem of the development of a plane magnetohydrodynamic boundary layer in a viscous
incompressible fluid is investigated for a time dependence of the velocity of the outer boundary
of the boundary layer and of the magnetic field in the form (1), A solution of the problem is
found under the assumption that the body motion starts impulsively and continues at equal ac-
celeration.

A solution of the prohlem of magnetohydrodynamic boundary layer development on a body which starts
to move miformly, at equal acceleration, or with acceleration, in a fluid at rest, has been obtained in a
number of papers [1-8]. An idea of S, G. Slavchev [9] is used below to investigate magnetohydrodynamic
boundary layer development in a cylinder. Let us consider the following growth law for the velocity on the
outer boundary of the boundary layer and of the magnetic field with time:

U, ) =V(nQ), B(x, t) =B, () VQ®, "
Q (1) = AP (1 + AtY.

Let us note that an analogous problem was considered for Ay =0 in [4]..

Boundary Layer Equations. Let us examine the plane nonstationary flow of a viscous incompressible
fluid with an applied magnetic field normal to the body surface. No electrical field is imposed and the elec-
trical field intensity vector E is taken zero everywhere [10], Then the boundary equations in the coordinate
system coupled to the body are [4]:
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let us integrate them with the following initial and boundary conditions

u=U(x f), v=20 for y=20, {=0;

u=0v=0 = (3)
for y=20 1~0.

u-U(x, 1) for. y— oo

If we introduce a new variable in the dimensionless form 7 = y/2V71 instead of the coordinate y mea-
sured along the normal to the body contour, and also the stream function ¥(x, y, ) = 2Vvie(x, 1, t), we then
obtain the following equation for the function ¢(x, 1, t):
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with the boundary conditions

p=-—=0 for n=0; %——»I for n— co. (5)
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Hence
Qf nA " 2, dV
f)=— = ——L . N=o0Byp—,
tO=g = F Tar "0
where the dot denotes differentiation with respect to time, We henceforth assume ¢ #« and A, >0,

Solutions of Equation (4). TFollowing the method of S. G, Slavchev, let us introduce the infinite system
of independent variables

v
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satisfying the recursion dependences
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ox ot

and let us make a change of variables by means of the formulas
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We consequently obtain the following equation
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Substituting a power series expansion of the function ¢
9= )+ @0 o+ ou(n, Hpi+... (7

into this equation and collecting terms with identical combinations of the variables py, we obtain the fol-
lowing system of equations for the functions ¢, ¢4, etc.:

3 2, A 2
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with the conditions
%:_6(;&20 for v=0; (Z% -1 for 1—> oo,
dn an ®
P = L I for n:O:—&»O for 1 -» oo,
on on
Analyzing the system (8) we arrive at the conclusion that this solution should be sought in the form
A — nA, "
P )=l ()+EC—a)f, () = fo () + Fn (),
. : 1+ A (10)
0

P ) =g () + C—) gt ) -+ (C—a) gt (m),

where it turns ouf, after substituting (10) into (8), that the functions f,() etc., are determined by the dif-
ferential equations:

fo -+ 2nfs — dafe = — 4a,
o A+ omfn—4(a+n) fo=4(fo—1),
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o +M@—4@at )= —4(04fifc — D) —4N (1 —fo),
g +2omgl’ —4@a+n+ gl
= 4 (2g0— fo fn—Fn fo + 2f0 fr) -+ 4NFrs
g g —4Qa 24+ 1) g = 4 —fufut £,

where the prime denotes differentiation with respect to 1.

(13)

A relationship which the function
- t(t—a) = (n+ o)t —a)
satisfies, is hence used.

Henceforth, let us examine the case ¢ =0 and n =1, This means that the body motion starts impul-
sively at a velocity A and continues at an equal acceleration with acceleration AA,;. The problem then re-
duces to solving the following ordinary differential equations:

fo 2l =0, i + 20fi —4fi = 4 (o —1),
fo(0) = fo(0) = f1(0) = f1 (0) = 0, fa(w) 1, fi(c0) =0,
g +2ngo—A4go=—4(1 + fo fo— ) —4N (1 —fo),

""" + 2ngl"" — 81" = 4(2g0 — fo f1—F1 fo + 2o F1) + 4NFI,

giz) +2T]g ——128{2)':4(8'51{)’—]% f,l’+f;2)!

20(0) = g0 (0) = “’(0) g (0) = 0; go(w0)—~>0, g (c0)—0.

(12)

We do not give here a detailed exposition of the method of solving the system of equations (12) obtained,
but only recall that the solution of the system can be obtained in closed form, This has been elucidated in
greater detail in [11-13]. Therefore, the solution of the system (12) satisfying the appropriate boundary is:
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Fig. 1. Dependence of the 15V x 3 153 ©

dim?nsionlesstimeofsep— +__1_ gN_i_, 32_ 0 23_ 0+ 1 iN_l_ 16_ ‘
aration on the parameters 3 7 5v'n 5Va 312 7 5V
aandN: 1)N = 0,2)N = 0.5.

The equations for higher order approximations can also be reduced fo the integration of ordinary dif-
ferential equations which can be performed in quadratures.

The time between the beginning of body motion and the time of boundary layer separation 75 = At
(if separation occurs) is found from the equation

2 (%) R+ VoA [0 7, gl (0 — g 0]20 13
U (ay)yzowfo(o)-‘r 1 fl()T “dx A [(I—I— ) g0 (0) = 1,81 (0) + - sgl (0) . (13)
where
. . 2
0) = g (0) = ——— (1424 + N),
fo(0)=F(0) = Vﬂ 20 (0) Vﬂ( ) »
£ (0) = — 2 (1.069-+ 0.5N), g (0) = y
Va

Using (13), we can determine the time of boundary layer separation of any body, particularly a cylin-
der. For a cylinder V(x) = 2sinx/R, from which it follows that separation first sets in near the rear stagna-
tion point for which the derivative of the function V(x) equals (—2/R), Substituting the values (14) and in-
troducing the parameter a = A/RA; into (13), we obtain a formula for the time interval Tg between the begin-
ning of the motion and the time of origination of boundary layer separation

9 .
14— — 201, [(1-424+N)(1+fs)—(1-069+0.5N)Ts+(0.195+0.11v) T =0
141, 1

Ts

Results of computing the dimensionless time 74 for boundary layer separation on the contour of a cy-
linder are represented in the figure for diverse values of the magnetic parameter N,

It is seen from Fig., 1 how rapidly separation occurs for N =0 and 0.5, i.e., how soon after in-
sertion of the magnetic field.

NOTATION
xand y are the coordinates measured along the contour and along the normal to the body surface,
respectively;
t is the time;
Tg =At is the dimensionless time of separation;
uand v are the velocity components along x and y;
Ulx, t) is the velocity on the outer boundary of the boundary layer;
By{x) is the magnetic induction;
o) is the density;
v is the viscosity;
oy is the electrical conductivity of the fluid;
R is the cylinder radius;
A and Ay are the non-negative constants;
o is any non-negative number;
n is an integer;
a =A/RAy isa parameter;
N is a parameter with the meaning of the Stuart number,
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